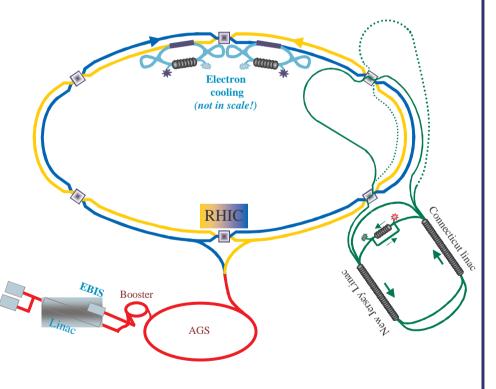
Linac-Ring Version of eRHIC

Ilan Ben-Zvi^{1,2}, Rama Calaga¹, Xiangyun Chang¹, Manouchehr Farkhondeh³, Alexei Fedotov¹, Jörg Kewisch¹, Vladimir Litvinenko¹, William Mackay¹, Christoph Montag¹, Thomas Roser¹, Vitaly Yakimenko²


Collider-Accelerator Department ⁽¹⁾, Physics Department ^{(2),}
Brookhaven National Laboratory

Bates, MIT ⁽³⁾

ERL e-RHIC. IP at 4 o'clock version Electron cooling (not in scale!) RHIC EBIS Booster Linac AGS

- Wide range of collision energies (E_{cm}/nucleon from 15 GeV to 100 GeV. e energy as low as 2 GeV).
- High luminosity $\sim 2 \times 10^{33}$ cm⁻² s⁻¹ for protons, $\sim 2 \times 10^{31}$ cm⁻² s⁻¹ for gold independent of e energy.
- High degree of polarization (>80%) of the electrons at any energy, no forbidden energies.
- One or two interaction regions with dedicated detectors
- e Energy simply upgradeable.
- Reduction of synchrotron radiation in detector by cooling ions.
- No quadrupoles in detector.
- Simple compensation for ion velocity.
- Possibility of γ -ion collider.

Main features

